Values were derived from numerous sources (listed below) and reflect the most up-to-date guidelines. Normal ranges may include measurements that deviate from these values. Note that the patient's normal range and clinical condition should always be considered.
2yo 3yo 4yo 5yo 6yo 7yo 8yo 9yo
* For Newborn infants, BP values vary considerably during the first few weeks of life and the definition of HTN in preterm and term neonates also varies. Data have been compiled on neonatal BP values and the summary table is available. Please note that no alternative data have been developed recently. For further information, please see the following articles:
"Report of the Second Task Force on Blood Pressure Control in Children--1987. Task Force on Blood Pressure Control in Children. National Heart, Lung, and Blood Institute, Bethesda, Maryland." Pediatrics 79(1): 1-25.
(Chen and Wang 2008, Chiolero, Cachat et al. 2007, McNiece, Poffenbarger et al. 2007, National High Blood Pressure Education Program Working Group on High Blood Pressure in and Adolescents 2004, Weaver 2019)
(National High Blood Pressure Education Program Working Group on High Blood Pressure in and Adolescents 2004, Chen and Wang 2008, Banker, Bell et al. 2016, Flynn, Kaelber et al. 2017, Weaver 2017, Weaver 2019)
Brambilla, P., L. Antolini, M. E. Street, M. Giussani, S. Galbiati, M. G. Valsecchi, A. Stella, G. V. Zuccotti, S. Bernasconi and S. Genovesi (2013). "Adiponectin and hypertension in normal-weight and obese children." Am J Hypertens 26(2): 257-264.
Chiolero, A., F. Cachat, M. Burnier, F. Paccaud and P. Bovet (2007). "Prevalence of hypertension in schoolchildren based on repeated measurements and association with overweight." Journal of hypertension 25(11): 2209-2217.
do Carmo, J. M., A. A. da Silva, Z. Cai, S. Lin, J. H. Dubinion and J. E. Hall (2011). "Control of blood pressure, appetite, and glucose by leptin in mice lacking leptin receptors in proopiomelanocortin neurons." Hypertension 57(5): 918-926.
Flynn, J. T., D. C. Kaelber, C. M. Baker-Smith, D. Blowey, A. E. Carroll, S. R. Daniels, S. D. de Ferranti, J. M. Dionne, B. Falkner, S. K. Flinn, S. S. Gidding, C. Goodwin, M. G. Leu, M. E. Powers, C. Rea, J. Samuels, M. Simasek, V. V. Thaker, E. M. Urbina, S. Subcommittee On and C. Management Of High Blood Pressure In (2017). "Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents." Pediatrics 140(3).
McNiece, K. L., T. S. Poffenbarger, J. L. Turner, K. D. Franco, J. M. Sorof and R. J. Portman (2007). "Prevalence of hypertension and pre-hypertension among adolescents." The Journal of pediatrics 150(6): 640-644. e641.
National High Blood Pressure Education Program Working Group on High Blood Pressure in, C. and Adolescents (2004). "The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents." Pediatrics 114(2 Suppl 4th Report): 555-576.
Ostchega, Y., J. P. Hughes, T. Nwankwo and G. Zhang (2018). "Mean mid-arm circumference and blood pressure cuff sizes for US children, adolescents and adults: National Health and Nutrition Examination Survey, 2011-2016." Blood Press Monit 23(6): 305-311.
Ostchega, Y., J. P. Hughes, R. J. Prineas, G. Zhang, T. Nwankwo and M. M. Chiappa (2014). "Mid-arm circumference and recommended blood pressure cuffs for children and adolescents aged between 3 and 19 years: data from the National Health and Nutrition Examination Survey, 1999-2010." Blood Press Monit 19(1): 26-31.
Parker, E. D., A. R. Sinaiko, E. O. Kharbanda, K. L. Margolis, M. F. Daley, N. K. Trower, N. E. Sherwood, L. C. Greenspan, J. C. Lo, D. J. Magid and P. J. O'Connor (2016). "Change in Weight Status and Development of Hypertension." Pediatrics 137(3): e20151662.
Pickering, T. G., J. E. Hall, L. J. Appel, B. E. Falkner, J. Graves, M. N. Hill, D. W. Jones, T. Kurtz, S. G. Sheps and E. J. Roccella (2005). "Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research." Circulation 111(5): 697-716.
Pickering, T. G., J. E. Hall, L. J. Appel, B. E. Falkner, J. W. Graves, M. N. Hill, D. H. Jones, T. Kurtz, S. G. Sheps, E. J. Roccella, P. Council on High Blood Pressure Research and A. H. A. Public Education Subcommittee (2005). "Recommendations for blood pressure measurement in humans: an AHA scientific statement from the Council on High Blood Pressure Research Professional and Public Education Subcommittee." J Clin Hypertens (Greenwich) 7(2): 102-109.
Prineas, R. J., Y. Ostchega, M. Carroll, C. Dillon and M. McDowell (2007). "US demographic trends in mid-arm circumference and recommended blood pressure cuffs for children and adolescents: data from the National Health and Nutrition Examination Survey 1988-2004." Blood Press Monit 12(2): 75-80.
Scott, W. A., A. P. Rocchini, E. L. Bove, D. M. Behrendt, R. H. Beekman, M. Dick, 2nd, G. Serwer, R. Snider and A. Rosenthal (1988). "Repair of interrupted aortic arch in infancy." J Thorac Cardiovasc Surg 96(4): 564-568.
Stefan, N., B. Vozarova, T. Funahashi, Y. Matsuzawa, C. Weyer, R. S. Lindsay, J. F. Youngren, P. J. Havel, R. E. Pratley, C. Bogardus and P. A. Tataranni (2002). "Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans." Diabetes 51(6): 1884-1888.
Xi, B., X. Zong, R. Kelishadi, Y. M. Hong, A. Khadilkar, L. M. Steffen, T. Nawarycz, M. Krzywinska-Wiewiorowska, H. Aounallah-Skhiri, P. Bovet, A. Chiolero, H. Pan, M. Litwin, B. K. Poh, R. Y. Sung, H. K. So, P. Schwandt, G. M. Haas, H. K. Neuhauser, L. Marinov, S. V. Galcheva, M. E. Motlagh, H. S. Kim, V. Khadilkar, A. Krzyzaniak, H. B. Romdhane, R. Heshmat, S. Chiplonkar, B. Stawinska-Witoszynska, J. El Ati, M. Qorbani, N. Kajale, P. Traissac, L. Ostrowska-Nawarycz, G. Ardalan, L. Parthasarathy, M. Zhao, T. Zhang and C. International Child Blood Pressure References Establishment (2016). "Establishing International Blood Pressure References Among Nonoverweight Children and Adolescents Aged 6 to 17 Years." Circulation 133(4): 398-408.
The Department of Otolaryngology and the University of Iowa wish to acknowledge the support of those who share our goal in improving the care of patients we serve. The University of Iowa appreciates that supporting benefactors recognize the University of Iowa's need for autonomy in the development of the content of the Iowa Head and Neck Protocols.
The contents of this web site are for information purposes only, and are not intended to be a substitute for professional medical advice, diagnosis, or treatment. The University of Iowa does not recommend or endorse any specific tests, physicians, products, procedures, opinions, or other information that may be mentioned on this web site. Although the standards discussed herein reflect the University of Iowa's head and neck protocols, reliance on any information provided herein is solely at your own risk.
Even though snoring is most common among older adults Trusted Source National Library of Medicine, Biotech Information The National Center for Biotechnology Information advances science and health by providing access to biomedical and genomic information. See Full Reference , it occurs in many children as well. It can have many causes, some of which cause snoring to come and go and others that are potentially long-lasting.
Knowing more about the types, causes, consequences, and treatments of snoring in children can allow parents to best look out for the health of their children and help kids get better, more restorative sleep.
When snoring becomes more frequent and interrupts sleep, it can indicate the presence of sleep-disordered breathing (SDB) Trusted Source National Library of Medicine, Biotech Information The National Center for Biotechnology Information advances science and health by providing access to biomedical and genomic information. See Full Reference . Sleep-disordered breathing ranges in seriousness.
On one end is primary snoring, also known as simple snoring or habitual snoring, when a child snores more than two times per week but does not have other noticeable symptoms or associated health issues.
Minor, occasional snoring is believed to occur in up to 27% of children Trusted Source National Library of Medicine, Biotech Information The National Center for Biotechnology Information advances science and health by providing access to biomedical and genomic information. See Full Reference . This type of light, temporary snoring does not usually raise health concerns.
Primary snoring without other symptoms is thought to affect between 10 and 12% of children Trusted Source National Library of Medicine, Biotech Information The National Center for Biotechnology Information advances science and health by providing access to biomedical and genomic information. See Full Reference . Studies estimate that 1.2-5.7% of children have obstructive sleep apnea. Of children diagnosed with sleep-disordered breathing, around 70% receive a diagnosis of primary snoring Trusted Source National Library of Medicine, Biotech Information The National Center for Biotechnology Information advances science and health by providing access to biomedical and genomic information. See Full Reference .
Snoring happens when air cannot flow freely through the airway at the back of the throat. As a person inhales or exhales, tissue around the airway vibrates Trusted Source Medline Plus MedlinePlus is an online health information resource for patients and their families and friends. See Full Reference , creating an audible noise. 2ff7e9595c
Comentarios